我们考虑组合纯勘探(CPE)的问题,该问题涉及在进行各个臂的卷筒未知的情况下,找到具有高奖励的组合组或臂,并且必须使用臂拉估计。以前的算法用于这个问题,同时获得许多情况下的样本复杂性减少,高度计算密集,因此即使对于温和的问题,也使它们不切实际。在这项工作中,我们提出了一种新的CPE算法在PAC设置中,该算法是计算重量的重量,因此可以很容易地应用于数万臂的问题。这是实现的,因为所提出的算法需要非常少量的组合Oracle调用。该算法基于连续接受武器,以及消除基于问题的组合结构。我们为我们的算法提供了样本复杂性保证,并在实验中展示其对大问题的有用性,而先前的算法是不切实际的,以延长几十个武器的问题。 HTTPS://github.com/noabdavid/csale提供了算法和实验的代码。
translated by 谷歌翻译
我们研究了在观察环境中贝叶斯网络的主动结构学习,其中可以从同一样本中观察到可变值数量的外部限制。随机样品是从网络变量的关节分布中得出的,算法迭代选择了在下一个样本中观察的变量。我们为此设置提出了一种新的主​​动学习算法,该算法的概率很高,其得分为$ \ epsilon $ -Close的结构达到了最佳分数。我们表明,对于我们称为稳定的一类分布,可以获得示例复杂性降低到$ \ widetilde {\ omega}(d^3)$,其中$ d $是网络变量的数量,其中$ d $是。我们进一步表明,在最坏的情况下,积极算法的样品复杂性保证与天真基线算法的样本复杂性几乎相同。为了补充理论结果,我们报告了将新活性算法与天真基线的性能进行比较的实验,并证明了样品复杂性的改善。在https://github.com/noabdavid/activebnsl上提供了算法和实验的代码。
translated by 谷歌翻译
Dynamical systems are found in innumerable forms across the physical and biological sciences, yet all these systems fall naturally into universal equivalence classes: conservative or dissipative, stable or unstable, compressible or incompressible. Predicting these classes from data remains an essential open challenge in computational physics at which existing time-series classification methods struggle. Here, we propose, \texttt{phase2vec}, an embedding method that learns high-quality, physically-meaningful representations of 2D dynamical systems without supervision. Our embeddings are produced by a convolutional backbone that extracts geometric features from flow data and minimizes a physically-informed vector field reconstruction loss. In an auxiliary training period, embeddings are optimized so that they robustly encode the equations of unseen data over and above the performance of a per-equation fitting method. The trained architecture can not only predict the equations of unseen data, but also, crucially, learns embeddings that respect the underlying semantics of the embedded physical systems. We validate the quality of learned embeddings investigating the extent to which physical categories of input data can be decoded from embeddings compared to standard blackbox classifiers and state-of-the-art time series classification techniques. We find that our embeddings encode important physical properties of the underlying data, including the stability of fixed points, conservation of energy, and the incompressibility of flows, with greater fidelity than competing methods. We finally apply our embeddings to the analysis of meteorological data, showing we can detect climatically meaningful features. Collectively, our results demonstrate the viability of embedding approaches for the discovery of dynamical features in physical systems.
translated by 谷歌翻译
Training a generative model on a single image has drawn significant attention in recent years. Single image generative methods are designed to learn the internal patch distribution of a single natural image at multiple scales. These models can be used for drawing diverse samples that semantically resemble the training image, as well as for solving many image editing and restoration tasks that involve that particular image. Here, we introduce an extended framework, which allows to simultaneously learn the internal distributions of several images, by using a single model with spatially varying image-identity conditioning. Our BlendGAN opens the door to applications that are not supported by single-image models, including morphing, melding, and structure-texture fusion between two or more arbitrary images.
translated by 谷歌翻译
Large language models (LLMs) have been shown to be able to perform new tasks based on a few demonstrations or natural language instructions. While these capabilities have led to widespread adoption, most LLMs are developed by resource-rich organizations and are frequently kept from the public. As a step towards democratizing this powerful technology, we present BLOOM, a 176B-parameter open-access language model designed and built thanks to a collaboration of hundreds of researchers. BLOOM is a decoder-only Transformer language model that was trained on the ROOTS corpus, a dataset comprising hundreds of sources in 46 natural and 13 programming languages (59 in total). We find that BLOOM achieves competitive performance on a wide variety of benchmarks, with stronger results after undergoing multitask prompted finetuning. To facilitate future research and applications using LLMs, we publicly release our models and code under the Responsible AI License.
translated by 谷歌翻译
自然语言处理(NLP)算法正在迅速改善,但在应用于分布的示例时通常会挣扎。减轻域间隙的突出方法是域的适应性,其中在源域上训练的模型适应了新的目标域。我们提出了一种新的学习设置,``从头开始适应域名'',我们认为这对于以隐私的方式将NLP的覆盖范围扩展到敏感域至关重要。在此设置中,我们旨在有效地从一组源域中注释数据,以便训练有素的模型在敏感的目标域上表现良好,从而从中无法从中获得注释。我们的研究将这种具有挑战性的设置的几种方法比较,从数据选择和域适应算法到主动学习范式,在两个NLP任务上:情感分析和命名实体识别。我们的结果表明,使用上述方法可以缓解域间隙,并将其组合进一步改善结果。
translated by 谷歌翻译
训练视觉和语言模型的更多数据总是更好吗?我们研究多模式任务中的知识可传递性。当前的机器学习趋势是假设通过从不同任务加入多个数据集,其整体绩效将有所改善。但是,我们表明,并非所有知识都会很好地转移或对相关任务产生积极影响,即使它们共享一个共同的目标也是如此。我们基于数百种分为4组的视觉和语言任务进行了数百个跨表现的分析。尽管同一组中的任务容易相互改进,但结果表明并非总是如此。其他因素(例如数据集大小或训练阶段)也对知识的转移程度也有很大的影响。
translated by 谷歌翻译
与传统的机器人手不同,由于固有的不确定性,兼容的手不足的手对模型的挑战。因此,通常基于视觉感知执行抓握对象的姿势估计。但是,在闭塞或部分占地环境中,对手和物体的视觉感知可以受到限制。在本文中,我们旨在探索触觉的使用,即动力学和触觉感测,以构成姿势估计和手动操纵,手工不足。这种触觉方法会减轻并非总是可用的视线。我们强调识别系统的特征状态表示,该状态表示不包括视觉,可以通过简单和低成本的硬件获得。因此,对于触觉传感,我们提出了一个低成本和灵活的传感器,该传感器主要是与指尖一起打印的3D,并可以提供隐式的接触信息。我们将双手手动的手作为测试案例不足,我们分析了动力学和触觉特征以及各种回归模型对预测准确性的贡献。此外,我们提出了一种模型预测控制(MPC)方法,该方法利用姿势估计将对象操纵为仅基于触觉的所需状态。我们进行了一系列实验,以验证具有不同几何形状,刚度和纹理的各种物体的姿势的能力,并以相对较高的精度显示工作空间中的目标。
translated by 谷歌翻译
在执行各种任务时,对象识别是必不可少的功能。人类自然使用视觉和触觉感知来提取对象类和属性。但是,机器人的典型方法需要复杂的视觉系统或多个高密度触觉传感器,这可能非常昂贵。此外,它们通常需要通过直接交互从真实对象中实际收集大型数据集。在本文中,我们提出了一种基于动力学的对象识别方法,该方法可以用任何多指的机器人手来执行,其中运动学是已知的。该方法不需要触觉传感器,并且基于观察对象的掌握。我们利用grasps的独特和框​​架不变的参数化来学习对象形状的实例。为了培训分类器,培训数据是在计算过程中快速而仅生成的,而无需与真实对象相互作用。然后,我们提出和比较可以集成任何受过训练的分类器的两种迭代算法之间。分类器和算法独立于任何特定的机器人手,因此可以在各种机器人手上施加。我们在实验中表明,算法很少有GRASP获得准确的分类。此外,我们表明对象识别方法可扩展到各种大小的对象。同样,对全局分类器进行了训练,可以识别一般几何形状(例如,椭圆形或盒子),而不是特定的几何形状,并在大型对象上进行了证明。提供了完整的实验和分析以显示该方法的性能。
translated by 谷歌翻译
目前,数据赢得了用户生成的数据和数据处理系统之间的大鼠竞赛。机器学习的使用增加导致处理需求的进一步增加,而数据量不断增长。为了赢得比赛,需要将机器学习应用于通过网络的数据。数据的网络分类可以减少服务器上的负载,减少响应时间并提高可伸缩性。在本文中,我们使用现成的网络设备以混合方式介绍了IISY,以混合方式实施机器学习分类模型。 IISY针对网络内分类的三个主要挑战:(i)将分类模型映射到网络设备(ii)提取所需功能以及(iii)解决资源和功能约束。 IISY支持一系列传统和集合机器学习模型,独立于开关管道中的阶段数量扩展。此外,我们证明了IISY用于混合分类的使用,其中在一个开关上实现了一个小模型,在后端的大型模型上实现了一个小模型,从而实现了接近最佳的分类结果,同时大大降低了服务器上的延迟和负载。
translated by 谷歌翻译